
1

chapter 6

HCI in the software
process

HCI in the software process

• Software engineering and the design process
for interactive systems

• Usability engineering

• Iterative design and prototyping

• Design rationale

the software lifecycle

• Software engineering is the discipline for

understanding the software design process, or
life cycle

• Designing for usability occurs at all stages of
the life cycle, not as a single isolated activity

2

The waterfall model

Requirements
specification

Architectural

design

Detailed

design

Coding and
unit testing

Integration

and testing

Operation and

maintenance

Activities in the life cycle

Requirements specification

designer and customer try capture what the system is
expected to provide can be expressed in natural language or
more precise languages, such as a task analysis would
provide

Architectural design

high-level description of how the system will provide the
services required factor system into major components of the
system and how they are interrelated needs to satisfy both
functional and nonfunctional requirements

Detailed design
refinement of architectural components and interrelations to
identify modules to be implemented separately the refinement
is governed by the nonfunctional requirements

Verification and validation

Verification
designing the product right

 Validation

designing the right product

The formality gap
validation will always rely to some extent on subjective means
of proof

Management and contractual issues

design in commercial and legal contexts

Real-world
requirements

and constraints The formality gap

3

The life cycle for interactive
systems

cannot assume a linear
sequence of activities

as in the waterfall model

lots of feedback!

Requirements

specification

Architectural
design

Detailed

design

Coding and

unit testing

Integration
and testing

Operation and

maintenance

Usability engineering

The ultimate test of usability based on measurement of user
experience

Usability engineering demands that specific usability measures be
made explicit as requirements

Usability specification
– usability attribute/principle

– measuring concept

– measuring method

– now level/ worst case/ planned level/ best case

Problems
– usability specification requires level of detail that may not be

– possible early in design satisfying a usability specification

– does not necessarily satisfy usability

part of a usability
specification for a VCR

 Attribute: Backward recoverability

 Measuring concept: Undo an erroneous programming
sequence

 Measuring method: Number of explicit user actions

to undo current program

 Now level: No current product allows such an undo

 Worst case: As many actions as it takes to

program-in mistake

 Planned level: A maximum of two explicit user actions

 Best case: One explicit cancel action

4

ISO usability standard 9241

adopts traditional usability categories:

• effectiveness

– can you achieve what you want to?

• efficiency

– can you do it without wasting effort?

• satisfaction

– do you enjoy the process?

some metrics from ISO 9241

 Usability Effectiveness Efficiency Satisfaction

objective measures measures measures

 Suitability Percentage of Time to Rating scale
for the task goals achieved complete a task for satisfaction

 Appropriate for Number of power Relative efficiency Rating scale for

trained users features used compared with satisfaction with
an expert user power features

 Learnability Percentage of Time to learn Rating scale for
functions learned criterion ease of learning

 Error tolerance Percentage of Time spent on Rating scale for

errors corrected correcting errors error handling
successfully

Iterative design and
prototyping
• Iterative design overcomes inherent problems of incomplete

requirements

• Prototypes

– simulate or animate some features of intended system

– different types of prototypes
• throw-away

• incremental

• evolutionary

• Management issues
– time

– planning

– non-functional features

– contracts

5

Techniques for prototyping

Storyboards

need not be computer-based

can be animated

Limited functionality simulations
some part of system functionality provided by designers

tools like HyperCard are common for these

Wizard of Oz technique

Warning about iterative design

design inertia – early bad decisions stay bad

diagnosing real usability problems in prototypes….

…. and not just the symptoms

Design rationale

Design rationale is information that explains why
a computer system is the way it is.

Benefits of design rationale
– communication throughout life cycle

– reuse of design knowledge across products

– enforces design discipline

– presents arguments for design trade-offs

– organizes potentially large design space

– capturing contextual information

Design rationale (cont’d)

Types of DR:

• Process-oriented
– preserves order of deliberation and decision-making

• Structure-oriented
– emphasizes post hoc structuring of considered

design alternatives

• Two examples:
– Issue-based information system (IBIS)

– Design space analysis

6

Issue-based information
system (IBIS)

• basis for much of design rationale research

• process-oriented

• main elements:

issues
– hierarchical structure with one ‘root’ issue

positions
– potential resolutions of an issue

arguments
– modify the relationship between positions and issues

• gIBIS is a graphical version

structure of gIBIS

Sub-issue

Issue

Sub-issue

Sub-issue

Position

Position

Argument

Argument

responds to

responds to

objects to

supports

questions

generalizes

specializes

Design space analysis

• structure-oriented

• QOC – hierarchical structure:
questions (and sub-questions)

– represent major issues of a design

options

– provide alternative solutions to the question

criteria

– the means to assess the options in order to make a choice

• DRL – similar to QOC with a larger language
and more formal semantics

7

the QOC notation

Question

Option

Option

Option

Criterion

Criterion

Criterion

Question … Consequent

Question
…

Psychological design rationale

• to support task-artefact cycle in which user tasks are

affected by the systems they use

• aims to make explicit consequences of design for users

• designers identify tasks system will support

• scenarios are suggested to test task

• users are observed on system

• psychological claims of system made explicit

• negative aspects of design can be used to improve next
iteration of design

Summary

The software engineering life cycle
– distinct activities and the consequences for

interactive system design

Usability engineering
– making usability measurements explicit as

requirements

Iterative design and prototyping
– limited functionality simulations and animations

Design rationale
– recording design knowledge

– process vs. structure

