
Implementation support

Overview

• programming tools provide levels of services for
programmers

• windowing systems as core support for separate
and simultaneous user-system threads

• programming the application and control of
dialogue

• interaction toolkits bring programming closer to
level of user perception

• user interface management systems help to
control relationship between presentation and
functionality of objects

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10

Introduction

Up to now, our concern has been slanted away from
concerns of the actual programmer.

Advances in coding have elevated programming
from hardware-specific to interaction technique-
specific.

Layers of development tools

• windowing systems

• interaction toolkits

• user interface management systems

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (1)

Elements of windowing systems

Device independence

programming the abstract terminal

device drivers

image models for output and (partially) input

• pixels
• Graphical Kernel System (GKS)
• Programmers' Hierarchical Interface to

Graphics (PHIGS)
• PostScript

Resource sharing

achieving simultaneity of user tasks

window system supports independent
processes

isolation of individual applications

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (2)

The roles of a windowing system

multiple
application

control

keyboardmouse
Window

1

Window
2

Window
n

application
program

application
program

application
program

Windowing
System

device
independence

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (3)

Architectures of windowing systems

3 possible software architectures

all assume device driver is separate

differ in how multiple application management is
implemented

1. each application manages all processes

everyone worries about synchronization
reduces portability of applications

2. management role within kernel of operating
system

applications tied to operating system

3. management role as separate application

maximum portability
the client-server architecture

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (4)

The client-server architecture

Device
Driver

Resource
Manager

Client
Application

1

Abstract
Terminal

1

Client
Application

2

Abstract
Terminal

2

Client
Application

n

Abstract
Terminal

n

keyboard
mouse Window

1

Window
2

Window
n

Server

Clients

Devices

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (5)

The X Window System architecture

X11 server

device drivers

application
client

window
manager

client

keyboard
mouse

pixel imaging model with some pointing mechanism

X protocol defines server-client communication

separate window manager client enforces policies
for input/output:

• how to change input focus
• tiled vs. overlapping windows
• inter-client data transfer

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (6)

Programming the application

2 programming paradigms

1. read-evaluation loop

Server

start

end

process input

read input

quit?

Device

Client
Application

no

yes

repeat
read-event(myevent)
case myevent.type

type_1:
do type_1 processing

type_2:
do type_2 processing

...
type_n:

do type_n processing
end case

end repeat

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (7)

Programming the application (cont'd)

2. notification-based

start

end

process event

read input

callback
request

quit?

Application

register
callbacks

with notifier

call
notifier

send to
appropriate

callback

Notifier

no

yes

see Figure 10.6 for sample program

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (8)

Using toolkits

Interaction objects

input and output intrinsically linked

Button Button Button ButtonButton

click

move releasepress move

toolkits provide this level of abstraction

programming with interaction objects (or
techniques, widgets, gadgets)

promote consistency and generalizability
through similar look and feel

amenable to object-oriented programming

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (9)

User Interface Management Systems

UIMS add another level above toolkits

toolkits too difficult for non-programmers

alternatively:

UI development system (UIDS)
UI development environment (UIDE)

As a conceptual architecture

provides separation between application
semantics and presentation, improving:

portability
reusability
multiple interfaces
customizability

identifies roles (e.g., Seeheim)

presentation component
dialogue control
application interface model

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (10)

Implementation of UIMS

Techniques for dialogue controller

menu networks

grammar notations

state transition diagrams

event languages

declarative languages

constraints

graphical specification

The drift of dialogue control

internal control (e.g., read-evaluation loop)

external control (independent of application
semantics or presentation)

presentation control (e.g., graphical
specification)

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (11)

Summary

Levels of programming support tools

Windowing systems

device independence

multiple tasks

Paradigms for programming the application

read-evaluation loop

notification-based

Toolkits

programming interaction objects

UIMS

conceptual architectures for separation

techniques for expressing dialogue

Human–Computer Interaction, Prentice Hall Implementation support

A. Dix, J. Finlay, G. Abowd and R. Beale © 1993 Chapter 10 (12)

