Cognitive models

Overview

- goal and task hierarchies
- linguistic
- physical and device
- architectural

Cognitive models

They model aspects of user:

- understanding
- knowledge
- intentions
- processing

Common categorisation:

- Competence
- Performance

Computational flavour

No clear divide

Goal and task hierarchies

Mental processing as divide-and-conquer Example: sales report

produce report gather data

- . find book names
- . . do keywords search of names database $further\ sub\text{-}goals$
- . . sift through names and abstracts by hand $further\ sub\mbox{-}goals$
- . search sales database $further\ sub-goals$ layout tables and histograms $further\ sub-goals$ write description $further\ sub-goals$

Issues for goal hierarchies

- Granularity
 - Where do we start?
 - Where do we stop?
 - Routine learned behaviour, not problem solving
 - The unit task
- Conflict
 - More than one way to achieve a goal
- Error

Techniques

- Goals, Operators, Methods and Selection (GOMS)
- Cognitive Complexity Theory (CCT)
- Hierarchical Task Analysis (HTA)

GOMS

Goals what the user wants to achieve

Operators basic actions user performs

Methods decomposition of a goal into subgoals/operators

Selection means of choosing between competing methods

GOMS example

GOAL: ICONISE-WINDOW

[select

GOAL: USE-CLOSE-METHOD

MOVE-MOUSE-TO-WINDOW-HEADER

POP-UP-MENU

CLICK-OVER-CLOSE-OPTION

GOAL: USE-L7-METHOD

PRESS-L7-KEY]

For a particular user:

Rule 1: Select USE-CLOSE-METHOD unless

another rule applies.

Rule 2: If the application is GAME, select

L7-METHOD.

Two parallel descriptions:

User production rules

Device generalised transition networks

Production rules are of the form:

if condition then action

Transition networks covered under dialogue models

Example: editing with vi

Production rules are in long-term memory

Model contents of working memory as attribute-value mapping

```
(GOAL perform unit task
(TEXT task is insert space)
(TEXT task is at 5 23)
(CURSOR 8 7)
```

Rules are pattern-matched to working memory, e.g.,

LOOK-TEXT task is at %LINE %COLUMN

is true, with LINE = 5 COLUMN = 23.

(9)

Four rules would model inserting a space:

SELECT-INSERT-SPACE

INSERT-SPACE-MOVE-FIRST

When fired, adds to working memory

```
(GOAL insert space)
(NOTE executing insert space)
(LINE 5)
(COLUMN 23)
```

Notes on CCT

Parallel model

Proceduralisation of actions

Novice versus expert style rules

Error behaviour can be represented

Measures

- Depth of goal structure
- Number of rules
- Comparison with device description

Problems with goal hierarchies

- a post hoc technique
- expert versus novice
- How cognitive are they?

Simple extensions possible (e.g., closure)

Linguistic notations

Understanding the user's behaviour and cognitive difficulty based on analysis of language between user and system.

Similar in emphasis to dialogue models

- Backus–Naur Form (BNF)
- Task-Action Grammar (TAG)

BNF

Very common notation from computer science
A purely syntactic view of the dialogue

Terminals lowest level of user behaviour CLICK-MOUSE, MOVE-MOUSE

Nonterminals ordering of terminals; higher level of abstraction

select-menu, position-mouse

Example of BNF

Basic syntax:

nonterminal ::= expression

An expression contains terminals and nonterminals combined in sequence (+) or as alternatives (|).

```
draw\_line \quad ::= select\_line + choose\_points + \\ last\_point \\ select\_line \quad ::= pos\_mouse + CLICK\_MOUSE \\ choose\_points ::= choose\_one \\ | choose\_one + choose\_points \\ choose\_one \quad ::= pos\_mouse + CLICK\_MOUSE \\ last\_point \quad ::= pos\_mouse + DBL\_CLICK\_MOUSE \\ pos\_mouse \quad ::= NULL \\ | MOVE\_MOUSE + pos\_mouse \\ \end{cases}
```

Measurements with BNF

Number of rules (not so good)

Number of + and | operators

Complications

- same syntax for different semantics
- no reflection of user's perception
- minimal consistency checking

TAG

Making consistency more explicit

Encoding user's world knowledge

Parameterised grammar rules

Nonterminals are modified to include additional semantic features

Consistency in TAG

In BNF, three UNIX commands would be described as

```
copy ::= cp + filename + filename
cp + filenames + directory
move ::= mv + filename + filename
mv + filenames + directory
link ::= ln + filename + filename
linh + filenames + directory
```

No BNF measure could distinguish between this and a less consistent grammar in which

$$link ::= ln + filename + filename$$

 $| ln + directory + filenames$

Consistency in TAG (cont'd)

In TAG, this consistency of argument order can be made explicit using a parameter, or *semantic* feature for file operations.

$$\begin{array}{|c|c|c|c|} \hline \text{Feature} & \text{Possible values} \\ \hline Op & \{ \ copy, move, link \ \} \\ \hline \end{array}$$

$$file_op[Op] ::= command[Op] + \\ filename + filename \\ | command[Op] + \\ filenames + directory$$

```
command[Op = copy] ::= cp

command[Op = move] ::= mv

command[Op = link] ::= ln
```

Other uses of TAG

Users existing knowledge

Congruence between features and commands

These are modelled as derived rules

Physical and device models

Based on empirical knowledge of human motor system

User's task: acquisition then execution.

These only address execution

Complementary with goal hierarchies

- The Keystroke Level Model (KLM)
- Buxton's 3-state model

(21)

KLM

Six execution phase operators

Physical motor K keystroking

P pointing

H homing

D drawing

Mental M mental preparation

System R response

Times are empirically determined.

$$T_{execute} = T_K + T_P + T_H + T_D + T_M + T_R$$

Example

GOAL: ICONISE-WINDOW

select

GOAL: USE-CLOSE-METHOD

MOVE-MOUSE-TO-WINDOW-HEADER

POP-UP-MENU

CLICK-OVER-CLOSE-OPTION

GOAL: USE-L7-METHOD

PRESS-L7-KEY]

Assuming hand starts on mouse:

USE-L7-METHOD		USE-CLOSE-METHOD	
Operator	$T ext{ (sec)}$	Operator	T (sec)
H[to kbd]	0.40	P[to menu]	1.1
M	1.35	B[LEFT down]	0.1
K[L7 key]	0.28	M	1.35
Total	2.03	P[to option]	1.1
	'	B[LEFT up]	0.1
		Total	3.75

Architectural models

All of these cognitive models make assumptions about the architecture of the human mind.

- Long-term/Short-term memory
- Problem spaces
- Interacting Cognitive Subsystems
- Connectionist
- ACT*

Display-based interaction

Most cognitive models do not deal with user observation and perception.

Some techniques have been extended to handle system output (e.g., BNF with sensing terminals, Display-TAG), but problems persist.

Level of granularity

Exploratory interaction versus planning

(25)