Task Analysis

Overview

What is task analysis?

Task Analysis Methods

- task decomposition
- knowledge based analysis
- entity-relationship techniques

Sources of Information

Uses of Task Analysis

What is Task Analysis?

Methods of analysing people's jobs:

- what people do
- what things they work with
- what they must know

Example:

in order to clean the house

- get the vacuum cleaner out
- fix the appropriate attachment
- clean the rooms
- when the dust bag gets full, empty it
- put the vacuum cleaner and tools away

Must know about:

vaccum cleaners, their attachments, dust bags, cupboards, rooms etc.

Approaches to task analysis

- Task decomposition splitting task into (ordered) subtasks
- Knowledge based techniques what the user knows about the task and how it is organised
- Entity—relation based analysis relationships between objects and actions and the people who perform them

General method:

- observe unstructured lists of words and actions
- organize using notation or diagrams

Differences from other techniques

Systems analysis

focus — system design

Task analysis

focus — the user

Cognitive models

focus — internal mental state

granularity — practiced 'unit' task

Task analysis

focus — external actions

granularity — whole job

However

- much overlap in general
- differences have exceptions.

Task Decomposition

Aims:

- describe the actions people do
- structure them within task subtask hierarchy
- describe order of subtasks

Focus on Hierarchical Task Analysis (HTA)

It uses:

- text and diagrams to show hierarchy
- plans to describe order

Textual HTA description

Hierarchy description ...

- 0. in order to clean the house
 - 1. get the vacuum cleaner out
 - 2. fix the appropriate attachment
 - 3. clean the rooms
 - 3.1. clean the hall
 - 3.2. clean the living rooms
 - 3.3. clean the bedrooms
 - 4. empty the dust bag
 - 5. put vacuum cleaner and attachments away

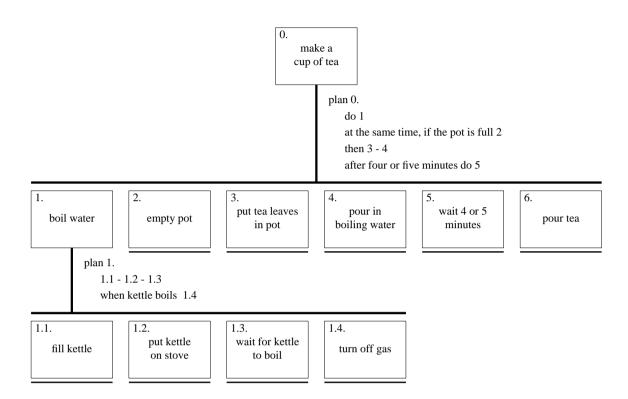
... and plans

- Plan 0: do 1-2-3-5 in that order.
 - when the dust bag gets full do 4
- Plan 3: do any of 3.1, 3.2 or 3.3 in any order
 - depending on which rooms need cleaning
- N.B. only the plans denote order

Generating the hierarchy

- get flat list of tasks
- group tasks into higher level tasks
- decompose lowest level tasks further

Stopping rules How do we know when to stop?


Is "empty the dust bag" simple enough?

Purpose: expand only relevant tasks

Error cost: stop when $P \times C$ is small

Motor actions: lowest sensible level

Diagrammatic HTA

- Line under box means no further expansion.
- Plans shown on diagram or written elsewhere.
- Same information as:
 - 0. make a cup of tea
 - 1. boil water

. . .

Refining the description

Given initial HTA (textual or diagram)

How to check/improve it?

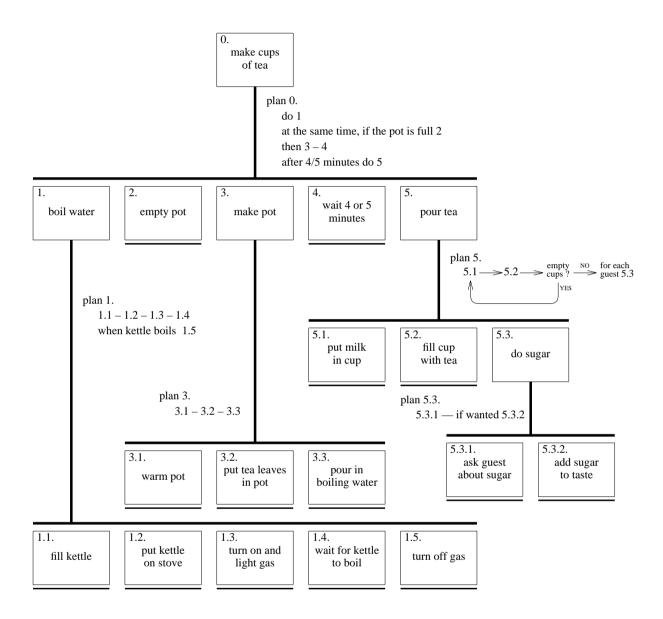
Some heuristics:

paired actions

e.g., where is 'turn on gas'

restructure

e.g., generate task 'make pot'


balance

e.g., is 'pour tea' simpler than making pot?

generalise

e.g., make one cup or two ... or more

Refined HTA for making tea

Types of plan

fixed sequence

e.g., 1.1-1.2-1.3

optional tasks

e.g., if the pot is full 2

waiting for events

e.g., when kettle boils 1.4

cycles

time-sharing

e.g., do 1; at the same time ...

discretionary

e.g., do any of 3.1, 3.2 or 3.3 in any order

mixtures

most plans involve several of the above

Knowledge Based Analyses

Focus on:

```
Objects — used in task
Actions — performed
```

Taxonomies represent levels of abstraction

Example:

```
motor controls
             steering wheel, indicators
   steering
   engine/speed
               ignition, accelerator, foot brake
      direct
      gearing clutch, gear stick
   lights
                 headlights, hazard lights
      external
      internal
                 courtesy light
   wash/wipe
      wipers front wipers, rear wipers
      washers front washers, rear washers
   heating
             temperature control, air direction,
             fan, rear screen heater
   parking
             hand brake, door lock
   radio
             numerous!
```

TDH notation

TDH – Task Description Hierarchy

Three types of branch point in taxonomy:

 ${f XOR}$ — normal taxonomy

object in one and only one branch

AND — object must be in both

represents multiple classifications

OR — weakest case

can be in one, many or none

Example:

```
wash/wipe AND
function XOR
wipe
front wipers, rear wipers
wash
front washers, rear washers
position XOR
front
front
front wipers, front washers
rear
rear wipers, rear washers
```

Larger TDH example

kitcher	n item	\mathbf{AND}	
/	shape	XOR	
,		dished	
, /			mixing bowl, casserole, saucepan, soup bowl, glass
/		flat	
/	'		plate, chopping board, frying pan
/	function	on \mathbf{OR}	
,	{	prepar	ation
	{		mixing bowl, plate, chopping board
	{	cookin	g
	{		frying pan, casserole, saucepan
	<u></u>	dining	XOR
			for food
			plate, soup bowl, casserole
		, 	for drink
		I	glass

N.B. $'/|\{' \text{ used for branch types.} \}$

More on TDH

Uniqueness rule:

can the diagram distinguish all objects?

e.g., plate is:

kitchen item/shape(flat)/function{preparation,dining(for food)}/
nothing else fits this description

Actions have taxonomy too:

kitche	en job \mathbf{OR}
	preparation
	$beating,\ mixing$
	cooking
	$frying,\ boiling,\ baking$
	dining
	pouring, eating, drinking

Abstraction and cuts

After producing detailed taxonomy 'cut' it to yield abstract view.

That is, ignore lower level nodes.

e.g., cutting above shape and below dining, plate becomes:

kitchen item/function{preparation,dining}/

This is a term in Knowledge Representation Grammar (KRG)

These can be more complex:

'beating in a mixing bowl' becomes

kitchen job(preparation)

using a kitchen item/function{preparation}/

Entity-Relationship Based Techniques

Emphasis on objects, actions and their relationships

Similar to object-oriented analysis, but ...

- includes non-computer entities
- emphasises domain understanding not implementation

Running example:

'Vera's Veggies' – a market gardening firm

Owner/manager: Vera Bradshaw

Employees: Sam Gummage and Tony Peagreen

various tools including a tractor 'Fergie'

two fields and a glasshouse

new computer controlled irrigation system

Objects

Start with list of objects and classify them:

Concrete objects:

simple things: spade, plough, glasshouse

Actors:

human actors: Vera, Sam, Tony, the customers what about the irrigation controller?

Composite objects:

sets: the team = { Vera, Sam, Tony }

tuples: tractor may be < Fergie, plough >

To the objects add attributes:

Object Pump3 simple — irrigation pump Attributes:

status: on/off/faulty

capacity: 100 litres/minute

N.B. need not be computationally complete

Actions

List actions and associate with each:

agent — who performs the actions
patient — which is changed by the action
instrument — used to perform action

Examples:

Sam (agent) planted (action) the leeks (patient)
Tony dug the field with the spade (instrument)

Note:

implicit agents — read behind the words 'the field was ploughed' — by whom?

indirect agency — the real agent?

'Vera programmed the controller to irrigate the field'

messages — a special sort of action 'Vera *told* Sam to ...'

rôles — an agent acts in several rôles Vera as worker or as manager

E/R Example I – objects and actions

Object Sam human actor

Actions:

S1: drive tractor

S2: dig the carrots

Object Vera human actor — the proprietor

Actions: as worker

V1: plant marrow seed

V2: program irrigation controller

Actions: as manager

V3: tell Sam to dig the carrots

Object the men composite

Comprises: {Sam, Tony}

Object glasshouse simple

Attribute:

humidity: 0-100%

Object Irrigation Controller non-human actor

Actions:

IC1: turn on Pump1

IC2: turn on Pump2

IC3: turn on Pump3

Object Marrow simple

Actions:

M1: germinate

M2: grow

Events

Events are when something happens

- performance of action

 'Sam dug the carrots'
- spontaneous events

'the marrow seed germinated' the humidity drops below 25%'

• timed events

'at midnight the controller ...'

Relationships

object-object

social — Sam is subordinate to Vera spatial — pump 3 is in the glasshouse

action-object

agent — (listed with object)
patient and instrument

actions and events

temporal and causal
'Sam digs the carrots because Vera told him'

Temporal relations

- also use HTA or dialogue notations.
- show task sequence (normal HTA)
- show object lifecycle (see page 241)

E/R example II – events and relations

Events Ev1: humidity drops below 25% Ev2: midnight Relations: object-object location (Pump3, glasshouse) location (Pump1, Parker's Patch) Relations: action—object patient (V3, Sam) - Vera tells Sam to dig patient (S2, the carrots) – Sam digs the *carrots* . . . instrument (S2, spade) $- \dots with \text{ the spade}$ **Relations:** action—event before (V1, M1) - the marrow must be sown before it can germinate triggers (Ev1, IC3) - when humidity drops below 25%, the controller turns on pump 3 causes (V2, IC1)

 the controller turns on the pump because Vera programmed it

Sources of Information

• Documentation

N.B. manuals say what is *supposed* to happen but, good for key words and prompting interviews

• Observation

formal/informal, laboratory/field (see Chapter 11)

Interviews

the expert: manager or worker? (ask both!)

Early analysis

Extraction from transcripts

list nouns (objects) and verbs (actions) beware technical language and context

> 'the rain *poured*' 'I poured the tea'

Sorting and classifying

grouping or arranging words on cards ranking objects/actions for task relevance (see Ch. 11) use commercial outliner

Iterative process:

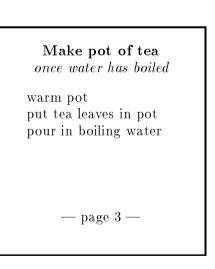
data sources \longleftrightarrow analysis

But costly, so use cheap sources where available

Uses of Task Analysis I

Manuals and Documentation

Procedural 'how to do it' manual


- from HTA description
- useful for extreme novices or when domain too difficult
- assumes all tasks known

Conceptual manual

- from knowledge or entity/relation based analyses
- good for open ended tasks

Example: tea making manual from HTA

boil water — see page 2 empty pot make pot — see page 3 wait 4 or 5 minutes pour tea — see page 4 — page 1 —

Uses of Task Analysis II

Requirements capture and systems design

- lifts focus from system to use
- suggests candidates for automation
- uncovers user's conceptual model

Detailed interface design

- taxonomies suggest menu layout
- object/action lists suggest interface objects
- task frequency guides default choices
- existing task sequences guide dialogue design

NOTE.

task analysis is never complete rigid task based design \Longrightarrow inflexible system