HUMAN-COMPUTER INTERACTION SECOND EDITION
Dix, Finlay, Abowd and Beale


Search Results


Search results for screens
Showing 51 to 60 of 281 [<< prev] [next >>] [new search]


Chapter 2 The computer 2.4.3 The 3D displays Page 77

Just as the 3D images used in VR have led to new forms of input device, they also require more sophisticated outputs. Desktop VR is delivered using a standard computer screen and a 3D impression is produced by using effects such as shadows, occlusion (where one object covers another) and perspective. This can be very effective and you can even view 3D images over the World Wide Web using a VRML enabled browser.


Chapter 2 The computer 2.4.3 The 3D displays Page 77

Different techniques are then used to ensure that each eye sees the appropriate image. One method is to have two small screens fitted to a pair of goggles. A different image is then shown to each eye. These devices are currently still quite cumbersome and the popular image of VR is of a user with head encased in a helmet with something like a pair of inverted binoculars sticking out in front! However, smaller and lighter LCDs are now making it possible to reduce the devices towards the size and weight of ordinary spectacles.


Chapter 2 The computer 2.4.3 The 3D displays Page 77

The ideal would be to be able to look at a special 3D screen and see 3D images just as one does with a hologram -- 3D television just like in all the best sci-fi movies! However, there is no good solution to this yet. One method is to inscribe the screen with small vertical grooves forming hundreds of prisms. Each eye then sees only alternate dots on the screen allowing a stereo image at half the normal horizontal resolution. However, these screens have very narrow viewing angles, and are not ready yet for family viewing.


Chapter 2 The computer 2.4.3 The 3D displays Page 78

We all get annoyed when computers take a long time to change the screen, pop up a window, or play a digital movie. However, with VR the effects of poor display perfomance can be more serious. In real life when we move our head the image our eyes see changes accordingly. VR systems produce the same effect by using sensors in the goggles or helmet and then using the position of the head to determine the right image to show. If the system is slow in producing these images a lag develops between the user moving his head and the scene changing. If this delay is more than a hundred milliseconds or so the feeling becomes disorienting. The effect is very similar to that of being at sea. You stand on the deck looking out to sea, the boat gently rocking below you. Tiny channels in your ears detect the movement telling your brain that you are moving; your eyes see the horizon moving in one direction and the boat in another. Your brain gets confused and you get sick. Users of VR can experience similar nausea and few can stand it for more than a short while. In fact, keeping laboratories sanitary has been a major push in improving VR technology.


Chapter 2 The computer Output alternatives Page 78

There are other output devices that deserve a mention, although when one considers standard computer systems they are often overlooked. These include modes of communication designed to supplement the screen, as well as those targeted as principal output devices.


Chapter 2 The computer Output alternatives Page 78

Apart from the CRT screen there are a number of visual outputs utilized in complex systems, especially in embedded systems. These can take the form of analog representations of numerical values, such as dials, gauges or lights to signify a certain system state. Flashing light-emitting diodes (LEDs) are used on the back of some computers to signify the processor state, whilst gauges and dials are found in process control systems. Once one starts in this mode of thinking, there are numerous visual outputs that can be thought of that are unrelated to the screen. One visual display that has found a specialized niche is the head-up display that is used in aircraft. The pilot is fully occupied looking forward and finds it difficult to look around the cockpit to get information. There are many different things that need to be known, ranging from data from tactical systems to navigational information and aircraft status indicators. The head-up display projects a subset of this information into the pilot's line of vision so that the information is directly in front of her eyes. This obviates the need for large banks of information to be scanned with the corresponding lack of attention to what is happening outside, and makes the pilot's job easier. Less important information is usually presented on a smaller number of dials and gauges in the cockpit to avoid cluttering the head-up display, and these can be monitored less often, during times of low stress.


Chapter 2 The computer Output alternatives Page 78

The other mode of output that we should consider is that of auditory signals. Often designed to be used in conjunction with screen displays, auditory outputs are poorly understood: we do not yet know how to utilize sound in a sensible way to achieve maximum effect and information transference. We have discussed speech previously, but other sounds such as beeps, bongs, clanks, whistles and whirrs are all used to varying effect. As well as conveying system output, sounds offer an important level of feedback in interactive systems. Keyboards can be set to emit a click each time the key is pressed, and this appears to speed up interactive performance. Telephone keypads often sound different tones when the keys are pressed; a noise occurring signifies that the key has been successfully pressed, whilst the actual tone provides some information about the particular key that was pressed. The advantage of auditory feedback is evident when we consider a simple device such as a doorbell. If we press it and hear nothing, we are left undecided. Should we press it again, in case we did not do it right the first time, or did it ring but we did not hear it? And if we press it again but it actually did ring, will the people in the house think we are very rude, ringing insistently? We feel awkward and a little stressed. If we were using a computer system instead of a doorbell and were faced with a similar problem, we would not enjoy the interaction and would not perform as well. Yet it is a simple problem that could be easily rectified by a better initial design, using sound. Chapter 15 on multimedia discusses the use of the auditory channel in more detail.


Chapter 2 The computer 2.5.1 Printing Page 79

If anything, computer systems have made it easier to produce paper documents. It is so easy to run off many copies of a letter (or book), in order to get it looking 'just right'. Older printers had a fixed set of characters available on a printhead. These varied from the traditional line printer to golf-ball and daisy-wheel printers. To change a typeface or the size of type meant changing the printhead, and was an awkward, and frequently messy, job, but for many years the daisy-wheel printer was the only means of producing high-quality output at an affordable price. However, the drop in the price of laser printers coupled with other cheap high-quality printers means that daisy-wheels are fast becoming a rarity. All of the popular printing technologies, like screens, build the image on the paper as a series of dots. This enables, in theory, any character set or graphic to be printed, limited only by the resolution of the dots. This resolution is measured in dots per inch (dpi). Imagine a sheet of graph paper, and building up an image by putting dots at the intersection of each line. The number of lines per inch in each direction is the resolution in dpi. For some mechanical printers this is slightly confused: the dots printed may be bigger than the gaps, neighbouring printheads may not be able to print simultaneously and may be offset relative to one another (a diamond-shaped rather than rectangular grid). These differences do not make too much difference to the user, but mean that, given two printers at the same nominal resolution, the output of one looks better than that of the other, because it has managed the physical constraints better.


Chapter 2 The computer 2.5.3 Screen and page Page 84

2.5.3 Screen and page


Chapter 2 The computer 2.5.3 Screen and page Page 84

A common requirement of word processors and desktop publishing software is that what you see is what you get (see also Chapters 4 and 9), which is often called by its acronym WYSIWYG (pronounced whizz-ee-wig). This means that the appearance of the document on the screen should be the same as its eventual appearance on the printed page. In so far as this means that, for example, centred text is displayed centred on the screen, this is reasonable. However, this should not cloud the fact that screen and paper are very different media.


Search results for screens
Showing 51 to 60 of 281 [<< prev] [next >>] [new search]

processed in 0.005 seconds


feedback to feedback@hcibook.com hosted by hiraeth mixed media